Zfp521 controls bone mass by HDAC3-dependent attenuation of Runx2 activity
نویسندگان
چکیده
Runx2 is indispensable for osteoblast lineage commitment and early differentiation but also blocks osteoblast maturation, thereby causing bone loss in Runx2 transgenic mice. Zinc finger protein 521 (Zfp521) antagonizes Runx2 in vivo. Eliminating one Zfp521 allele mitigates the cleidocranial dysplasia-like phenotype of newborn Runx2(+/-) mice, whereas overexpressing Zfp521 exacerbates it. Overexpressing Zfp521 also reverses the severe osteopenia of adult Runx2 transgenic mice. Zfp521 binds to both Runx2 and histone deacetylase 3 (HDAC3), promotes their association, and antagonizes Runx2 transcriptional activity in an HDAC3-dependent manner. Mutating the Zfp521 zinc finger domains 6 and 26 reduces the binding of Zfp521 to Runx2 and inhibition of Runx2 activity. These data provide evidence that Zfp521 antagonizes Runx2 in vivo and thereby regulates two stages of osteoblast development, early during mesenchymal cell lineage commitment and later during osteoblast maturation. Thus, the balance and molecular interplay between Zfp521 and Runx2 contribute to the control of osteoblast differentiation, skeletal development, and bone homeostasis.
منابع مشابه
Zfp521 works its zinc fingers to the bone
Zfp521 works its zinc fingers to the bone A zinc fi nger protein controls two stages of bone formation by opposing the master regulator of osteogenesis, Hesse et al. report. Runx2 is a transcription factor essential for the differentiation of mesen-chymal precursors into bone-forming osteoblasts. Mutations in human Runx2 cause the skeletal disorder cleidocrani-al dysplasia, in which certain bon...
متن کاملZfp521 is a target gene and key effector of parathyroid hormone-related peptide signaling in growth plate chondrocytes.
In the growth plate, the interplay between parathyroid hormone-related peptide (PTHrP) and Indian hedgehog (Ihh) signaling tightly regulates chondrocyte proliferation and differentiation during longitudinal bone growth. We found that PTHrP increases the expression of Zfp521, a zinc finger transcriptional coregulator, in prehypertrophic chondrocytes. Mice with chondrocyte-targeted deletion of Zf...
متن کاملCoordinated transcriptional regulation of bone homeostasis by Ebf1 and Zfp521 in both mesenchymal and hematopoietic lineages
Bone homeostasis is maintained by the coupled actions of hematopoietic bone-resorbing osteoclasts (OCs) and mesenchymal bone-forming osteoblasts (OBs). Here we identify early B cell factor 1 (Ebf1) and the transcriptional coregulator Zfp521 as components of the machinery that regulates bone homeostasis through coordinated effects in both lineages. Deletion of Zfp521 in OBs led to impaired bone ...
متن کاملTyrosine phosphorylation controls Runx2-mediated subnuclear targeting of YAP to repress transcription.
Src/Yes tyrosine kinase signaling contributes to the regulation of bone homeostasis and inhibits osteoblast activity. Here we show that the endogenous Yes-associated protein (YAP), a mediator of Src/Yes signaling, interacts with the native Runx2 protein, an osteoblast-related transcription factor, and suppresses Runx2 transcriptional activity in a dose-dependent manner. Runx2, through its PY mo...
متن کاملPin1 Null Mice Exhibit Low Bone Mass and Attenuation of BMP Signaling
Bone is constantly formed and resorbed throughout life by coordinated actions of osteoblasts and osteoclasts. However, the molecular mechanisms involved in osteoblast function remain incompletely understood. Here we show, for the first time, that the peptidyl-prolyl isomerase PIN1 controls the osteogenic activity of osteoblasts. Pin1 null mice exhibited an age-dependent decrease in bone mineral...
متن کامل